DynIBEX: une boîte à outils pour la vérification des systèmes cyber-physiques

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier
U2IS, ENSTA ParisTech, Palaiseau, France

Journées AFADL
7 juin 2016
A small cyber-physical system: closed-loop control

Control may be a continuous-time PI algorithm

\[e(t) = r(t) - y(t) \quad \text{,} \quad u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau \]

Physics is usually defined by non-linear differential equations (with parameters)

\[\dot{x} = f(x(t), u(t), p) \quad \text{,} \quad y(t) = g(x(t)) \]

What is designing a controller?
Find values for \(K_p \) and \(K_i \) such that a **given specification** is satisfied.
Specification of PID Controllers

PID controller: requirements based on closed-loop response

We observe the output of the plant

- **Overshoot**: Less than 10%
- **Steady-state error**: Less than 2%
- **Settling time**: Less than 10s
- **Rise time**: Less than 2s

Note: such properties come from the **asymptotic behavior** (well defined for linear case) of the system.

Classical method to study/verify closed-loop systems

Numerical simulations **but**

- do not take into account that models are only an approximation;
- produce approximate results.

and not adapted to deal with uncertainties
Example of properties

- system stays in safe zone \((\forall t)\) or finishes in goal zone \((\exists t)\)
- system avoids obstacle \((\exists t)\) or not in invalid space at a given time \((\exists t)\)

for different quantification's of initial state-space \((\forall x \text{ or } \exists x)\), parameters, etc.
Set-based simulation

Definition
numerical simulation methods implemented interval analysis methods

Goals
takes into account various uncertainties (bounded) or approximations to produce rigorous results

Example
A simple dynamics of a car

\[
\dot{y} = \frac{-50.0y - 0.4y^2}{m} \quad \text{with} \quad m \in [990, 1010]
\]

One Implementation **DynIBEX**: a combination of **CSP solver (IBEX)** with **validated numerical integration methods**

http://perso.ensta-paristech.fr/~chapoutot/dynibex/

\(^1\)Gilles Chabert (EMN) et al. http://www.ibex-lib.org
IBEX in one slide

```
#include "ibex.h"

using namespace std;
using namespace ibex;

int main() {

  Variable x;
  Function f (x, x*exp(x));

  NumConstraint c1(x, f(x) <= 3.0);
  CtcFwdBwd contractor(c1);

  IntervalVector box(1);
  box[0]=Interval(1,10);

  cout << "f" << box << " = " << f.eval(box) << endl;
  contractor.contract(box);
  cout << "after contraction box = " << box << endl;
}
```

IBEX is also a parametric solver of constraints, an optimizer, etc.
Paving

Methods used to represent complex sets S with

- **inner boxes** i.e. set of boxes included in S
- **outer boxes** i.e. set of boxes that does not belong to S
- **the frontier** i.e. set of boxes we do not know

Example, a ring $S = \{(x, y) \mid x^2 + y^2 \in [1, 2]\}$ over $[-2, 2] \times [-2, 2]$

Remark: involving bisection algorithm and so complexity is exponential in the size of the state space (contractor programming to overcome this).
Initial \textbf{V}alue \textbf{P}roblem of \textbf{O}rdinary \textbf{D}ifferential \textbf{E}quations

Consider an IVP for ODE, over the time interval $[0, T]$

$$\dot{y} = f(y) \quad \text{with} \quad y(0) = y_0$$

IVP has a unique solution $y(t; y_0)$ if $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is Lipschitz in y but for our purpose we suppose f smooth enough i.e., of class C^k

Goal of numerical integration

- Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = T$
- Compute a sequence of values: y_0, y_1, \ldots, y_n such that

$$\forall i \in [0, n], \quad y_i \approx y(t_i; y_0).$$
Validated solution of IVP for ODE

Goal of validated numerical integration

- Compute a sequence of time instants: \(t_0 = 0 < t_1 < \cdots < t_n = T \)
- Compute a sequence of values: \([y_0], [y_1], \ldots, [y_n]\) such that

\[
\forall i \in [0, n], \quad [y_i] \ni y(t_i; y_0).
\]

A two-step approach

- **Exact solution** of \(\dot{y} = f(y(t)) \) with \(y(0) \in \mathcal{Y}_0 \)
- **Safe approximation** at discrete time instants
- **Safe approximation** between time instants

Note A contractor approach can be used on the guaranteed solution of ODE [SWIM16]
Simulation of an open loop system

A simple dynamics of a car

\[\dot{y} = \frac{-50.0y - 0.4y^2}{m} \quad \text{with} \quad m \in [990, 1010] \]

Simulation for 100 seconds with \(y(0) = 10 \)

The last step is \(y(100) = [0.0591842, 0.0656237] \)
Simulation of an open loop system

```c
int main()
{
    const int n = 1;
    Variable y(n);
    IntervalVector state(n);
    state[0] = 10.0;

    // Dynamique d'une voiture avec incertitude sur sa masse
    Function ydot(y, ( -50.0 * y[0] - 0.4 * y[0] * y[0]) / Interval(990, 1010));
    ivp_ode vdp = ivp_ode(ydot, 0.0, state);

    // Integration numerique ensembliste
    simulation simu = simulation(&vdp, 100, RK4, 1e-5);
    simu.run_simulation();

    // For an export in order to plot
    simu.export1d_yn("export-open-loop.txt", 0);

    return 0;
}
```
Simulation of a closed-loop system
A simple dynamics of a car with a PI controller

\[
\begin{pmatrix}
\dot{y} \\
\dot{w}
\end{pmatrix} = \left(\frac{k_p(10.0 - y) + k_i w - 50.0y - 0.4y^2}{10.0 - y} \right)
\text{ with } m \in [990, 1010], \ k_p = 1440, \ k_i = 35
\]

Simulation for 10 seconds with \(y(0) = w(0) = 0 \)

The last step is \(y(10) = [9.83413, 9.83715] \)
Simulation of a closed-loop system

```c++
#include "ibex.h"

using namespace ibex;

int main(){

    const int n = 2;
    Variable y(n);

    IntervalVector state(n);
    state[0] = 0.0;
    state[1] = 0.0;

    // Dynamique d'une voiture avec incertitude sur sa masse + PI
    Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
        / Interval (990, 1010),
        10.0 - y[0]));

    ivp_ode vdp = ivp_ode(ydot, 0.0, state);

    // Integration numerique ensembliste
    simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
    simu.run_simulation();

    simu.export1d_yn("export-closed-loop.txt", 0);

    return 0;
}
```
Simulation of a closed-loop system with safety

A simple dynamics of a car with a PI controller

\[
\begin{pmatrix}
\dot{y} \\
\dot{w}
\end{pmatrix} = \begin{pmatrix}
k_p(10.0-y) + k_i w - 50.0y - 0.4y^2 \\
m/10.0 - y
\end{pmatrix}
\]

with \(m \in [990, 1010], k_p = 1440, k_i = 35 \)

and a safety propriety

\[\forall t, y(t) \in [0, 11] \]

Failure

\[y([0, 0.0066443]) \in [-0.00143723, 0.0966555] \]
Simulation of a closed-loop system with safety property

```cpp
#include "ibex.h"

using namespace ibex;

int main()
{
    const int n = 2;
    Variable y(n);

    IntervalVector state(n);
    state[0] = 0.0; state[1] = 0.0;

    // Dynamique d'une voiture avec incertitude sur sa masse + PI
    Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
                              / Interval (990, 1010),
                              10.0 - y[0]));
    ivp_ode vdp = ivp_ode(ydot, 0.0, state);

    simulation simu = simulation(&vdp, 10.0, RK4, 1e-6);
    simu.run_simulation();

    // verification de surete
    IntervalVector safe(n);
    safe[0] = Interval(0.0, 11.0);
    bool flag = simu.stayed_in (safe);
    if (!flag)
    {
        std::cerr << "error safety violation" << std::endl;
    }

    return 0;
}
```
Properties in DynIBEX

- **safe**(X) i.e.
 \[\forall t \leq t_{\text{end}}, y(t) \in X \]

- **finished_in**(X) i.e.
 \[y(t_{\text{end}}) \in X \]

- **go_out**(X) i.e.,
 \[\exists t \leq t_{\text{end}}, y(t) \cap X = \emptyset \]

- **has_crossed**(X) i.e.,
 \[\exists t \leq t_{\text{end}}, y(t) \cap X \neq \emptyset \]

- **has_reached**(X) i.e.,
 \[y(t_{\text{end}}) \cap X \neq \emptyset \]

- **one_in**(X₁, X₂, ..., Xₙ) i.e.,
 \[\exists t \leq t_{\text{end}}, \exists i, y(t) \in X_i \]

- **stayed_in**(X) i.e.,
 \[\forall t \leq t_{\text{end}}, y(t) \in X \]

- **stayed_in_till**(X, T) i.e.,
 \[\forall t \leq T \leq t_{\text{end}}, y(t) \in X \]
Simulation of an hybrid closed-loop system

A simple dynamics of a car with a discrete PI controller

\[
\dot{y} = \frac{u(k) - 50.0y - 0.4y^2}{m} \quad \text{with} \quad m \in [990, 1010]
\]

\[
i(t_k) = i(t_{k-1}) + h(c - y(t_k)) \quad \text{with} \quad h = 0.005
\]

\[
u(t_k) = k_p(c - y(t_k)) + k_i i(t_k) \quad \text{with} \quad k_p = 1400, k_i = 35
\]

Simulation for 3 seconds with \(y(0) = 0 \) and \(c = 10 \)
Simulation of an hybrid closed-loop system

```c
int main()
{
    const int n = 1;
    Variable y(n);

    IntervalVector state(n); state[0] = 0.0;

double t = 0;
const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) {
    Affine2 goal(10.0);
    Affine2 error = goal - state[0];

    // Controleur PI discret
    integral = integral + sampling * error;
    Affine2 u = 1400.0 * error + 35.0 * integral;

    // Dynamique d'une voiture avec incertitude sur sa masse
    Function ydot(y, (u.itv() - 50.0 * y[0] - 0.4 * y[0] * y[0])
        / Interval(990, 1010));
    ivp_ode vdp = ivp_ode(ydot, 0.0, state);

    // Integration numerique ensembliste
    simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
    simu.run_simulation();

    // Mise a jour du temps et des etats
    state = simu.get_last();
    t += sampling;
}

    return 0;
}
```

- Two representations of sets: box, zonotopes
 Interaction must be improved

- Manual handling of discrete-time evolution
Conclusion

DynIBEX is one ingredient of verification tools for cyber-physical systems. It can handle uncertainties, can reason on sets of trajectories.

Already applied on

- Parameter synthesis of PI controllers [SYNCOP’15]
- Controller synthesis of sampled switched systems [SNR’16]
- Parameter tuning in the design of mobile robots [MORSE’16]

Future work (a lot)

- Pursue and improve cooperation with IBEX language
- Extend the set of properties
- SMT modulo ODE
- Improve algorithm of validated numerical integration
- Simulation of hybrid systems