AFADL 2016

GenISIS: un outil de recherche d'attaques d'initié en Systèmes d'Information

Authors: Amira RADHOUANI
Akram IDANI
Yves LEDRU
Narjes BEN RAJEB

Laboratoire d'Informatique de Grenoble

CONTEXT AND MOTIVATION

Information System security includes =
 Protection against external intruders

+

Insider attacks.

OUTLINE

1. Introduction

Illustration example

2. Malicious behavior

3. Extraction of malicious behaviors

Extraction of malicious behaviors from B Specification

4. Conclusion

constraint sorring based approach

GenISIS tool

Introduction

- Illustration example Dynamic analysis

ILLUSTRATION EXAMPLE

DYNAMIC ANALYSIS

 Dynamic analysis searches for sequences of actions modifying the state and breaking the authorization constraint.

Malicious behavior

MALICIOUS BEHAVIOR

A malicious behaviour executed by a user u, regarding authorization constraints, is an observable secure behaviour Q with m steps such that:

- user u is malicious and would like to run op_m by misusing his roles R_u .
- $-val_0$: is an initial state where $(u, R_u, c_m) \models false$
- for every step i $(i \in 1..m)$ premise $(u, R_u, c_i) \models true$

[A. Radhouani et al., Trans. Petri Nets and Other Models of Concurrency 10: 131-152 (2015)]

Extraction of malicious behaviors

- 1. Extraction of malicious behaviors from B Specification
- 2. Proof based approach
- 3. Constraint solving based approach
- 4. GenISIS Tool

Symbolic proof

- Proof obligations on reachability properties:
 - Having E and F, 2 disjoint state predicates
 - And $op(x_1, x_2, ..., x_n)$ is an operation of the IS.
 - Enabledness: $\exists x_1, \dots, x_n, var. P_I \land Pre(op)$
 - Reachability: $\exists x_1, \dots, x_n, var. P_I \land Pre(op) \Rightarrow \neg [Action(op)] \neg P_F$

$$\exists x_1, \dots, x_n, var. P_{\mathsf{I}} \land Pre(op) \land \neg [Action(op)] \neg P_{\mathsf{F}}$$

 $\neg c_m \lor \neg Pre(op_m)$ $\land \neg Pre(o_i)$

Q = init;

,

; op_m

PROOF BASED APPROACH

[A. Radhouani, A. Idani, Y. Ledru and N. Ben Rajeb. TopNoc10: 131-152 (2015)]

First step: Use of a prover (AtelierB) to extract symbolic operations.

operations which Customer Add Account Owner tep.

Customer__RemoveAccountOwner

AtelierB fails to scharge automatically PO when the proof becomes huge. Customer_NEW

In our example:

- First iteration: Account_NEW are nept.
- Second iteration Customer AddAccountOwner ns.
- Unable to extract Account_transferFunds several times.

eration

CONSTRAINT SOLVING BASED APPROACH

• Constraint solving problem:

$$\{x_1,\ldots,x_n|\exists var. P_{\mathsf{I}} \land Pre(op) \land \neg [Action(op)] \neg P_{\mathsf{F}}\}$$

- Allows to valuate operation parameters.
- Simplifies the proof.
- Allows to extract scenarios which involves the same operation several times (the same operation with different valuations).

GENISIS TOOL

-Generator of Insider Scenarios from an Information System-

Conclusion

CONCLUSIONS

- GenISIS was able to extract 9 scenarios.
 - 2 real attacks: allowed in the security model.
 - 7 fake attacks: not allowed in the security model.
- A model-checker (i.e ProB) extracted the same attacks after exploring more than 1500 states and 36000 transitions.
- GenISIS was Was successfully tested on 5 case studies.

Try it, it is available on open source in: http://genisis.forge.imag.fr/

Thanks for your attention

23 23